Growth of 48 built environment bacterial isolates on board the International Space Station (ISS).

نویسندگان

  • David A Coil
  • Russell Y Neches
  • Jenna M Lang
  • Wendy E Brown
  • Mark Severance
  • Darlene Cavalier
  • Jonathan A Eisen
چکیده

Background. While significant attention has been paid to the potential risk of pathogenic microbes aboard crewed spacecraft, the non-pathogenic microbes in these habitats have received less consideration. Preliminary work has demonstrated that the interior of the International Space Station (ISS) has a microbial community resembling those of built environments on Earth. Here we report the results of sending 48 bacterial strains, collected from built environments on Earth, for a growth experiment on the ISS. This project was a component of Project MERCCURI (Microbial Ecology Research Combining Citizen and University Researchers on ISS). Results. Of the 48 strains sent to the ISS, 45 of them showed similar growth in space and on Earth using a relative growth measurement adapted for microgravity. The vast majority of species tested in this experiment have also been found in culture-independent surveys of the ISS. Only one bacterial strain showed significantly different growth in space. Bacillus safensis JPL-MERTA-8-2 grew 60% better in space than on Earth. Conclusions. The majority of bacteria tested were not affected by conditions aboard the ISS in this experiment (e.g., microgravity, cosmic radiation). Further work on Bacillus safensis could lead to interesting insights on why this strain grew so much better in space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Microbiomes of the dust particles collected from the International Space Station and Spacecraft Assembly Facilities

BACKGROUND The International Space Station (ISS) is a unique built environment due to the effects of microgravity, space radiation, elevated carbon dioxide levels, and especially continuous human habitation. Understanding the composition of the ISS microbial community will facilitate further development of safety and maintenance practices. The primary goal of this study was to characterize the ...

متن کامل

Survey of environmental biocontamination on board the International Space Station.

The International Space Station (ISS) is an orbital living and working environment extending from the original Zarya control module built in 1998. The expected life span of the completed station is around 10 years and during this period it will be constantly manned. It is inevitable that the ISS will also be home to an unknown number of microorganisms. This survey reports on microbiological con...

متن کامل

Characterization of Aspergillus fumigatus Isolates from Air and Surfaces of the International Space Station

One mission of the Microbial Observatory Experiments on the International Space Station (ISS) is to examine the traits and diversity of fungal isolates to gain a better understanding of how fungi may adapt to microgravity environments and how this may affect interactions with humans in a closed habitat. Here, we report an initial characterization of two isolates, ISSFT-021 and IF1SW-F4, of Aspe...

متن کامل

Monitoring the Microgravity Environment Quality On-Board the International Space Station Using Soft Computing Techniques

This paper presents an artificial intelligence monitoring system developed by the NASA Glenn Principal Investigator Microgravity Services project to help the principal investigator teams identify the primary vibratory disturbance sources that are active, at any moment in time, on-board the International Space Station, which might impact the microgravity environment their experiments are exposed...

متن کامل

Cultivation of Staphylococcus epidermidis in the Human Spaceflight Environment Leads to Alterations in the Frequency and Spectrum of Spontaneous Rifampicin-Resistance Mutations in the rpoB Gene

Bacteria of the genus Staphylococcus are persistent inhabitants of human spaceflight habitats and represent potential opportunistic pathogens. The effect of the human spaceflight environment on the growth and the frequency of mutations to antibiotic resistance in the model organism Staphylococcus epidermidis strain ATCC12228 was investigated. Six cultures of the test organism were cultivated in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PeerJ

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2016